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Self-oscillation in a detuned cavity

By H. J. CARMICHAEL
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.

A simple symmetry relates optical bistability in a ring cavity tuned near resonance
and multimode instability and self-oscillation in a cavity excited midway between
resonances.

It has been predicted that the continuous wave (c.w.) output of a bistable cavity may become
unstable to multimode self-oscillation. Such multimode instabilities were first discussed by
Bonifacio & Lugiato (1978) for absorptive bistability in a ring cavity. Their analysis was later
extended by Lugiato (1980) to dispersive bistability. Recently, much attention has been given
to this subject following Ikeda’s identification of an instability leading to period-doubling and
chaos in dispersive bistability (Ikeda 1979; Ikeda et al.1980).

A detailed study of the work done by Ikeda led myself and co-workers to discover a
second multimode instability for a saturable absorber in a ring cavity (Carmichael ez al. 1982).
A telling distinction exists between this and the instability studied by Bonifacio & Lugiato.
They studied absorptive bistability in a resonant cavity. The instability that we have discovered
occurs with the injected laser and resonant absorber tuned midway between cavity resonances.
In a high-finesse cavity the Ikeda instability behaves similarly (Firth 1981; Carmichael et al.
1982; Bar-Joseph & Silberberg 1983). These observations provide the clue to the central result
of this paper; the stability analysis for a nonlinear ring cavity exhibits a symmetry that
establishes a one-to-one correspondence between optical bistability in a cavity tuned near
resonance and multimode self-oscillation in a cavity tuned between resonances. The theory of
absorptive and dispersive bistability can then be transferred as a whole to the description of
corresponding multimode instabilities in a cavity tuned between resonances.

For simplicity I consider the plane-wave theory of absorptive bistability for a two-level
homogeneously broadened medium in a ring cavity, and give detailed results only for the
mean-field limit. My central conclusions are, however, quite general. They hold for dispersive
bistability, for a gaussian-mode theory, and beyond the mean-field limit. On the other hand,
they do not hold (at least not without qualification) in a standing-wave cavity, although it must
be recognized that multimode instabilities have been predicted there also (Casagrande et al.
1980; Firth 1981).

The general stability analysis for a ring cavity containing a two-level homogeneously
broadened absorber gives the following characteristic equation for eigenvalues A governing the
linearized dynamics (Carmichael 1983):

o o [EWL) /AT (14 AT)) (14 AT,) + E(0)2 peHAT/ AT
LR [E(O)] [(1+/\Tl) (1+AT) +E(L)? ]
e [E(L) O (1+AT)) (14AT,) 4 £(0)? He+AT/a+ATy) ~
—Re™ [E(O)] { [(1+/\T) (14+AT) + (L)z] }cos6~0. (1)
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Here R is the mirror reflection coefficient, 7, and 7, are atomic relaxation times, 7 is the cavity
round-trip time, 6 is the cavity detuning (—n < 6 < n) and E(0) and E(L) are dimensionless
field amplitudes at either end of the medium. Solutions to (1) with Re (A) = 0 define instability
boundaries where a stable mode, Re(A) < 0, becomes unstable, Re (A) > 0, as system
parameters are varied. Switching points in absorptive bistability (6 = 0) are defined by the
requirement

E(L)? 1+ E(0)? RE(L)[H_ 1+E(0)2] o,

R o ivED: REo) | T TFED)” (2)

where, if (2) is satisfied, (1) has a solution A = 0, indicating marginal stability for the resonant
cavity mode. In the limit A7, -0, AT, —0, (1) is a function of exp (A7) alone and all the cavity
modes become unstable at the bistable switching points, i.e. when (2) is satisfied, (1) has
solutions A, = inn/7,n = 0,+2, +4,..., where Re (A,)) = 0 for every n and Im (A,,) identifies
the cavity mode frequencies measured with respect to the resonant laser frequency (see figure
1). Observe now, that, with AT, = AT, =0, (1) is invariant under the transformation
A—>A+in/7, 0 >0+ mn. It follows that all cavity modes become unstable at the same instability
boundaries (defined by (2)) in a cavity tuned midway between resonances (6 = —1). Now (1)
hassolutionsA,, = inm,n = £ 1,3, ..., where Im (A,,) identifies cavity mode frequencies measured
with respect to the detuned laser frequency (see figure 1).
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Fioure 1. Multimode instabilities for C = 20, T;/7 = 1.0 and T;/T; > 1. To the left is a plot of the state equation
for absorptive bistability (6 = 0) and to the right the state equation for the corresponding detuned system
(6 = —m). In dotted regions one mode is unstable and in regions of broken lines two modes are unstable.

An exact correspondence between the range of bistability (6 = 0) and the range of instability
in a detuned cavity (6 = —m) exists only for 7;/7—0, T,/7—0. I will illustrate the situation
for finite 7;/7 and T,/7 with explicit results for the mean-field limit (1—R) <€ 1, oL < 1, with
C=oalL/4(1—R), where a is the resonant absorption coefficient. With E(L) = X and
E(0) = X[1+ (1—R)2C/(1+ X?)], perturbative solutions to (1) yield

2C 1—X*+inn T, /7 ] (3)
1+ X (1+innT,/7) 1 +inn T,/7) + X2)°

Re (A,) =—771(1—R) Re[l +
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withn=0,+2,+4,... for 0 =0,and n=+1,3,... for 6 = —n. In figure 2 the boundaries
of instability Re (A,) =0 are plotted as a function of 7;/7 and X for n=0,+2,+4 in
absorptive bistability, and n = + 1, +3, £ 5in the corresponding detuned cavity. The range of X
between the vertical lines labelled » = 0 is the range of the negative slope branch in the bistable
system. Here the resonant mode is unstable for all 7;/7. The non-resonant modes are unstable
whenever 7;/7 and X define a point lying under, or inside, the plotted curves. In figure 2 (a)
the horizontal bar follows successive changes of stability as a function of X in a system with
T,/ = 1.0, T;/ T, > 1. In figure 1 these changes of stability are displayed on the respective
steady-state curves:

Y= X[142C/(1+X?)] 4)
for 6 = 0, and Y=X (5)
for 6=—n. Here Y and Y are dimensionless input field amplitudes, with

Y=(1—R)"'(2u/k) (T, T,*E; and Y =1(2u/#) (T, T,)*E;, where p is the atomic dipole
moment.
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Ficure 2. Instability boundaries for C = 20 and (a) T}/ T, » 1; (b) T,/ T, = 0.5. Broken curves are for § = 0
and solid curves are for § = —m.

In figure 2b the stability boundaries are distorted so that they extend outside the range of
the resonant mode instability. This is the basis for self-pulsing instability along the upper branch
in absorptive bistability, as studied by Bonifacio & Lugiato (1978). The only significance it
holds in the corresponding detuned cavity is that the » = + 3 modes, for example, might be
unstable, while the n = + 1 modes remain stable. This crossing of the instability boundaries does
not occur if 7;/ T, 2 C (C > 1), as in figure 2a. It is also eliminated in a gaussian-mode theory
(Lugiato & Milani 1983).

If we return to the limit 7; /70, T,/T— 0, the relation between bistability and self-oscillation
in a detuned cavity becomes even closer when we consider the form that this oscillation takes.
In this limit cavity dynamics can be modelled by a nonlinear map (as in Ikeda (1979)). For
the mean-field limit and 6 = —mx.

1 =2V =X {1—-(1-R)[1+2C/(1+X7)]}. (6)
[ 245 ]
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The fixed point X = Y’ is unstable for |dX,,,,/dX,| > 1. This is equivalent to the condition
dY/dX < 0 obtained from (4), from which my central conclusion again follows. Now if we
look for a two-cycle, an oscillation between X, and X,, to replace the unstable fixed point, this

requires
X, +X,=2Y,
2C 2C
X1(1+TX¥)-—X2(1+1+X§). (7)

It follows that X, and X, are a pair of states satisfying the state equation (4) for some Y, a
function of ¥”. Figure 3 shows these oscillatory states in detail. For X, < ¥’ < ¥} = }(X, + ;)
there is a stable oscillation between the middle and lower branches of the corresponding
bistability curve. For ¥; < Y’ < ¥, ~ (X, + X,) there is a stable oscillation between the upper
and lower branches of the corresponding bistability curve. For X, < Y" < Y, there is an
unstable oscillation between the upper and middle branches of the corresponding bistability
curve.

X,

X,
0 1 — 1
5 15 25 X, 20
Y
Ficure 3. The relation between oscillation in a detuned cavity (@ = —m), to the right, and the steady states of the

corresponding bistable system (6 = 0), to the left, for C = 20. Fixed points along the broken portion of X = ¥’
are unstable. The solid branches bifurcating from ¥’ = X, are the states X; and X, of stable two-cycles. The
dotted branches bifurcating from Y’ = X, correspond to unstable two-cycles.

To summarize, for every example of bistability in a nonlinear ring cavity tuned near
resonance, there exists a corresponding multimode instability leading to self-oscillation between
states of the bistability curve, in a cavity tuned between resonances. This correspondence is
one-to-one in the limit 7;/7 >0, T,/7 >0, and identifies a range of multimode instability that
extends to finite 7,/7, T,/7.
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